Four Simple Steps

Creating a Silverlight Application Using IdeaBlade DevForce
Silverlight

DevForce has been designed from the ground up by experienced enterprise application developers with
several very important goals in mind:

e Make it (following Albert Einstein’s famous advice) “as simple as possible, but not simpler.”

e Support (and encourage) “separation of concerns” in the architecture: your business model (and
all business logic) is entirely separate from your user interface, so you can reuse it across more
than one user interface, and more than one application.

e “Don’t fence mein.” You build the application you want to build, with the functionality and user
interface you need. We make that much easier for you, and we make sure your end product is
truly industrial strength -- but we don’t take over, and we don’t get in your way. Not in the
beginning, and — even more importantly — not later on, after you’ve invested so much into your
development effort that changing course is no longer an option.

So what's it like to build an application with DevForce Silverlight? Let’s take a walk through the four
simple steps:

e Generate your Silverlight and web projects using the DevForce Silverlight project template
e Create your Entity Data Model

e Create your DevForce Domain Model

e Create your Ul.

You can navigate to the Visual Studio solutions for this article using the following links:

e CodeCS
e CodeVB

Step1. Generate Your Silverlight and Web Projects

DevForce provides a Visual Studio Action Edit LD Floppy Help

project tem p|ate to get off the "’é DevForceSilverlightApp - Microsoft ¥isual Studio

ground quickly with your F|Ie Edit Wiew Project Build Debug Data Tools Test Analyze Window He
application. Choose File / New / proect. | Crkeshiten

Project from the main menu, find Open web Site... ShiFt+Alt-HN
the DevForce section under the Add ’ File... Chrl+
language of your choice, and select Praject Fram Existing Code. .,

the DevForce Silverlight

CodeCS
CodeVB

Application project template.

Specify the name and storage location for your new solution, and click <OK>:

New Project : llﬂ

Bo [
Project bypes: Templates: I-NET Framewark 3.5 j 2 |

- Reporting ﬂ My Templates
- Silverlight
- Tesk ‘h DevForce BOS Web Application ‘|| DevForce Silverlight Application
- WCF Search Online Templates. ..
- Workflow
[=]- Wiswal T
- Aindows
- Web
- Diatabase
- DeyForce
- Reporting
- Silverlight
- Tesk
- Wtorkflow
[#-- Mther Praiert Tunes j

I Creates a DevForce Silverlight Application and Web Server

Mame: I DevForceSilverlightapp|
Location: I C:4\0105yniLUY 100 Fundamentalsi040 Fast-Track Silverlight Appl03 Code Samples j Browse. .. |
Solution Mame: I DevForcesilverlight App W Create directory For salution

Ok Cancel |

Solution Explorer - DevForcesSilverlightappisteb

J Solution 'DevForcesSilverlightipp' (2 projects)

=8 ' DevForceSilverlightApp

[+ [=d| Properties
3] References
- [Shared Code
:.ﬁ.pp.xam|
. H- s MainPage.xaml
e ForecoverighappvieD |

(|

H- |[=d| Properties

i [+3] References

----- [ClientBin

..... | ||:|g

----- j Defaulk, aspx

..... %] EntityServer.sve
..... %] EntityService sve
----- 4] Global.asax

----- 5] Silverlight.js

..... S5 Web.config

(|

Step2. Create your Entity Data Model

The template creates two projects. The web
project (here named DevForceSilverlightAppWeb)
will ultimately be deployed on your IIS server; the
Silverlight project (DevForceSilverlightApp) will
contain the application parts that will be
downloaded automatically to the client’s browser
via a .XAP file.

Note that the web project is set as the Startup
Project for the solution. That’s important! If the
Silverlight app is set as startup, the MainPage
will still display, but all operations that require
connection to the server — like login and data
retrieval — will be dead in the water!

That's it for step one. We have our application
structure, and needed references to DevForce and
.NET assemblies are already set. Let’s get on with
creating our application’s business model!

The ADO.NET Entity Data Model is used only server-side in our DevForce Silverlight application, so let’s

add it to the web project:

Solution Explorer - DevF etlightippiwehb

= D E S|

[Salution 'DevForcesitverlight
=8 E DevForceSilverlightapp
. B [=d| Properties Rebuild

o] References

w0 MainPage. xaml

= IDevForceSilverlights 4, | View in Browser

W

=] References
- | ClientBin

[log
_j Default, aspsx
-) EntityServer.svc

] ErkibuSar

Clean
1 shared Code
ﬁ, app.config Fublish. ..
[= App.xaml Fun Code &nalysis

=d| Properties Convert ko 'Web Application
@ Check Accessibilicy...

. DevFarceSitverli Caleulate Code Metrics
Project Dependencies. ..

Project Build Order...

L

3]
b4

owten.

Existing Ikeri...

Mew Folder

Add ASP.NET Folder »

Component. ..

Class...

Add Reference. ..

Add web Reference..,

Add Service Reference. ..

d?;t Yigw Class Diagram

Sek as StartUp Project

Dehug

Please note that adding the Entity Data Model to the web project isn’t your only option: you may prefer
to give it a project of its own. The only requirement is that it should ultimately reside in an assembly that
is deployed server-side.

We’ll name to indicate its function in the app, and the database to which it will map:

Add New Item - DevForcesilverlightAppiyreb
oo F
Categories: Templates: 82 |-
= Wisual C# Visual Studio installed templates 1=
- Code
- Data 75| Web Form [TMaster Page
- iaeneral &:|web User Control |:] Web Content Form
- Web E Silverlight Application __i; Domain Service Class
- Windows Forms __;'i-;ADO.NET Diata Service 4 DL MET Entity Data Model
- WPF 3]AIAX Clint Behavior 37]AJA% Clisnt Control
- Reporting 3]AIAN Client Library [T A1a% Master Page |
- Sitwerlight 5] 418% Weh Farm B AJA%-enabled WCF Service
-~ Wiorkflow .i:] Application Manifest File ‘ﬁl Assembly Information File
] Browser File] Class
&) Class Diagram @ Code File
léfj DataSet E Debugger Visualizer
j_‘; Dynamic Data Field f__j Genetic Handler
| @] HTML Page o] Installer Class x|
& project item For creating an ADQ.MET Entity Data Model,
IMame: i odelnorthwind B, edrm
Add Cancel
L

Please note: We strongly suggest, for your first pass through this tutorial, that you use the
NorthwindIB database and follow the tutorial quite literally, as written. If you wish to use a
different database or make other departures from the tutorial, do so on your second pass
through. We've found this approach not only produces the greatest success and satisfaction, but
also saves you time.

We'll generate the app from a database...

Entity Data Model Wizard

Choose Model Contents

2=

B

Empky model

in the model,

< Prewvious | Mext = I Firiish

Generates the model From a database, Classes are generated from the model when the project is
compiled. This wizard also leks vou specify the database connection and database objects to include

Cancel

... target the Entity Data Model Wizard 2l x|

NorthwindIB
database,
name our
connection
settings...

| _%j_) Choose Your Data Connection

Which data connection should your application use to connect to the database?

IsiIverIighthtd.NorthwindIB.dbo j Mew Conneckion, ..

This connection skring appears ko conkain sensitive data (for example, a password) that is reguired ko
conneck to the database, Storing sensitive data in the connection string can be a security risk, Da you
want to include this sensitive data in the connection string?

¢ Moy exclude sensitive data From the connection string, I will set it in my application
code,

) Yes, indlude the sensitive data in bthe conneckion string,

Enkiky conneckion string:

metadata=res: ff*iServerMadelMarthwindIB. csdl|res: [1*/ServerModelMNorthwindIE, ssdl | res: i Ser ;I
werModelMorthwindIB. msl; provider=System. Data, SglClient; provider connection string="Data
Source=,;Initial Catalog=MorthwindIB; Integrated Securitv=True"

il

¥ Save entity connection settings in Web. Config as:

< Previous | Mesxk = I Fimish Cancel

Entity Data Model Wizard

| b Choose Your Database Objects

YWhich database objects do you want to include in your model?

want mapped...

El-[#] 5 Tables

[Role {dbo)

Model Mamespace:

-0 categary (dbo)

- [Customer {dbo)
[Emplayee (dbo)

[0 EmployeeTerritory (dba)
-] EmplovesTerritoryMoPayload (dbo)
O ntermnationalorder (dbo)
-]] order (dbo)

[rderDetai dho)

- PreviousEmplovee (dbo)
[Product (dbod

[0 Region (dba)

—[F1 supplier (dbo)
1 swsdianrams rdbat ;I

IServerMndeINDrthwindIB|

< Previous [| Finish I Cancel

2| x|| ..selectthe tableswe

...and click <Finish>. The wizard cranks out the Entity Data Model, which looks like the following:

&< Customer ' & Order ' &< Employee |
= Scalar Properties [= Scalar Properties (= Scalar Properties
Paddress o Freight Faddress
PCity ?ﬁ‘ordernate PBirthDate
“fCompanyName #orderiD ity
fCDHtactName fRequiredDate f(:ountr;‘I
P ContactTitle 5 RowVersion #4EmployeelD
??Countr}' & shipAddress 5 Extension
#customerID o1 - FoPship City P FirstName
& CustomerID_OLD - FeshipCountry 0.1 FHireDate
rFax FefshipName FfHomePhone
frhone FeshippedDate FfLastName
#rpostalCods o shipPostal Code FrNotes
PrRegion e shipRegion #riPhoto
ZRowVersion =l Navigation Properties [¥PhotoPath
= Navigation Properties B customer [¥PostalCode
@Order I:'aEmployee E'Region
I:'a QrderDetail ﬁRm’NEFSiD”
o Title
‘1 o TitleOfCourtesy
- =) Mavigation Propertiss
- - - - = Employeel
% Supplier Qg Product Qg OrderDetail éEmplgyeez
lﬂ Order
=] Scalar Properties =] Scalar Properties =] Scalar Properties
e address & CategoryID & Discount 0.1 | *
5 City & Discontinued gﬁ{)rderID
o CompanyName FoDiscontinuedDate #4{ProductlD
FEContactName #productID + F&f Quantity
Fo ContactTitle FoProducthame FofRowVersion
FfcCountry fh & QuantityPerUnit EEfUnitPrice
E7Fax 0.1 * | “fReorderLevel = Navigation Properties
ﬁHomePage ﬁRow‘Jersion 'ﬂ order
[Phone e UnitPrice 'ﬂ Product
o PostalCode e UnitsInStock .
[Region o UnitsOnOrder
ERU"NEFSW” [=] Navigation Properties
?ﬁSupplierID l?a OrderDetail
[=] Navigation Properties l%SuppIier
l?a Product . .

There are a few naming problems with the model as generated by the EDM wizard. For one, it’s
impossible to distinguish a navigation property that returns a collection from one that returns a single
related object. The Order property that appears on both the Customer and Employee entities returns, in
each case, a collection of Orders. So does OrderDetail in the Order type. But Customer and Employee in
the Order type return single objects, not collections. It would be helpful if the pluralization of the names
reflected the actual content of the properties.

Also, if we inspect the Properties for any of the _

entities defined in our model, we’d see that the ServerModelMorthwindIB.Order EntityTvpe
name of the Entity Set that will hold instances of m 5]

that entity is the same as the name of the type . i

itself: again, not so helpful, as we might well prefer | |B Code Generation

that the set names be plural and only the type Abstract False
name singular. ficcess Public
B General
Base Twpe (Mone)
Docurnentation
Enkity Set Mame Order
Marne Order

We could clean those things up using the EDM designer, but as it so happens, it’s quite a bit easier to do
in the DevForce Object Mapper, so we’ll defer that cleanup and proceed straight to step three. For now,
we just save our Entity Data Model as is.

Step3. Create your DevForce Domain Model
Now that we have an Entity Data Model, we’re ready to create our DevForce-generated Domain Model.
Before we do that, though, let’s take a few moments to answer a couple of basic questions:

e Why two models? and
e What do |l getin a DevForce Silverlight app that | wouldn’t get in any Silverlight app?

The ADO.NET Entity Data Model provided by Microsoft provides a great structure for mapping objects to
a relational database, and as used by the Microsoft Entity Framework, permits you, the developer, to
completely offload the work of writing data access code. Not only do you no longer need to master the
various dialects of SQL supported by different DBMS vendors: you no longer need to write SQL in any
form. In your application code, you talk to an object model that can be designed to fit your application
like a glove. You are buffered from the design details of the back-end database, which may be at once a
poor fit to your application and also difficult or impossible to change.

Unfortunately the Entity Data Model can’t be used in a Silverlight application, because there’s nothing in
Silverlight that knows how to do anything useful with it. (The Entity Framework isn’t part of Silverlight.)

Darn!

But wait...DevForce to the rescue!

DevForce leverages the power and benefits of the Entity Data Model and the Entity Framework on the
application server, but gives you a model and a surrounding apparatus that can be used, in very
powerful ways, within your Silverlight client.

DevForce includes an EntityManager, similar in function to the Entity Framework’s ObjectContext, but
much more powerful. This EntityManager resides client-side and maintains a business object cache that
you can query using LINQ!

But the DevForce-generated DomainModel will also be used server-side. DevForce uses the model
server-side and client-side in ways that are appropriate to the two different environments. You have one
business model to maintain — not two.

The figure below shows how DevForce enables you to leverage the power of the Entity Framework in
your Silverlight application. The Devforce Entity Manager maintains a queryable client-side cache of
business objects retrieved from the back-end data store(s).

DevForce-enabled LINQ queries can be directed against the client-side
cache or against back-end data stores.

When directed against the data store, they are automatically translated by the DevForce Entity Server
into LINQ-to-Entities queries that the Entity Framework can process. The Entity Framework then
generates the necessary SQL to retrieve the data from the database, which it delivers to the DevForce
Entity Server. The Entity Server very efficiently ships the data to the client where it is converted into
DevForce business objects of the types defined in your DevForce Domain Model.

Data Tier Middle (Application Server) Tier Client Tier

Entity
Framewaork DevForce
Business Business
Objects Objects

L’_L‘ 7
™==r ™~ 1]
ADO.NET DevForce
Tables 33 ltems Entity Entlty - 7
: Framework Manager o g

User
Interface

Note, by the way, that unlike the Entity Data Model, the DevForce Domain Model doesn’t limit you to
using a single database as a data source. The DevForce Domain Model can encompass any number of
Entity Data Models, each mapping to a different relational database. Even further, it can use DevForce-

generated Entity Data Models that are based on web services — something entirely beyond the standard
Entity Data Model’s capabilities!

Our Entity Data Model(s) will get a few automated modifications from DevForce, but will otherwise
remain as generated. The purpose of the modifications will be to link the DomainModel against which
you write all of your application code to the powerful data retrieval and storage capabilities of the
Microsoft Entity Framework.

Okay, enough with the background. Let’s see just how easy it is to create our DevForce DomainModel.

Start by launching the DevForce Object Mapper from the Tools menu in Visual Studio:

Juild Debug Test Analvee Window Help

By @ | ¢ 'ce Objeck Mapper

attach to Process., .. Chrl+al+P
Conneck to Database, .,

Conneck to Server, .,

Code Snippets Manaaer,,, Chrl+K, Chrl+B

The Object Mapper launches. By pulling down the Model menu or right-clicking the (New Model) node
in the left panel, we can begin the process of linking our Domain Model to an existing Entity Data Model:

il DevForce Dbject Mapper =10l x|
File Model View Help

a1 (New Mo~ “NE‘W ot

Open Cirl+0 ‘

Close A

Add Entity Model... ’ : : !

add Web Service, V3 il_ .; :

Save Ctri+5 ” ==| = :
£PIANL 270N
" “ ’ E
e ot ¥

| D EABLADE

Build Better Apps Faster.

|'=,£| Ready

Since we have
only a single
Entity Data
Model in our
solution, the
Object
Mapper
automatically
finds it. You
have only to
confirm that
this is an
Entity Data
Model you’d
like to include
in your
Domain
Model by
clicking the
<Open>
button. |

wr

[

g

L N

Add Entity Model File

=l o2 E

Look in: I I DevForceSilverlightéppiwieb

ICabin

| ClientBin

ilog

|)obj

[ElPru:uperties

s ServerModeMorthwindIB. edm::

ht3

File narme: Ei ervertdodelM orthwindlB. edrns j

Files af type: I Entity Model files [*. edrx) j

Open

Cancel |
]

File Model View Help

E i (New Model)

x| Customer

| Employes
| Order

| OrderDetail
| Product

/| Supplier

% % 1%

[

[

55

[

ik DevForce Object Mapper

= @}‘ serverModelNorthwindIB.edmx
=l (3| ServerModelNorthwindIBContext ()

ServerModelNorthwindIB.edmx
@\}
Filz Name: CADL0SvnLUALOD Fundamentals\040 Fast-Track Silverlight Ap

Data Source Key Name: | Default
Namespacs: ServerModelNorthwindIB

Container Name: ServerModelNorthwindIB.ServerModelNorthwindIEContaxt

Injected Base Types... |
MName Pluralizer... |

Verification Interceptors: | Both * [¥ Generate Binding Attributes
[v Generate Validation Attributes

& DevForce C NET

| 4] Ready

The Object
Mapper will
quickly
mine the
EDM for
information
and then
display its
structure.

By selecting the
ServerModelNorthwindIB
Context node in the tree,
you can see (and edit)
much more of the detail
about the EDM.

J)DevForce Object Mapper
File Model View Help

El o (Mew Modef)

B 4 ServerModelNorthwindIB.edmx

= & ServerModelNorthwindl BContext

| Customer

I

| Employes
Order
OrderDetail
Product

| Supplier

% [[[

%

Entity Set Name

a Is Maodified Is Abstract

[Employes r
Order r Order r
OrderDetail - OrderDetail r
Product - Product r
Supplier - Supplier -

Bat

Erit
Ent
Enit
Enit

Customer

Simple Properties (13) | Navigation Propertiss (1) | Associations (1

il DevForce Object Mapper
File Model View Help

El 4 (New Model}

Bl 4. ServerModelNorthwindIB.edmx
B & ServerModelNorthwindIBContext (5)

the Order type
and change the

Order name of the
simple Properties (12) | Mavigation Properties (3) | Associations (3) | FFEIght prOpe rty
Name Display Name Bindable Mode Key DataType Is Nullable (based on a
OrderDate Order Date TwolWay r [~ Frelght COI umn
OrderID Order ID TwoWay I r in the Order
RequiredDate Requirad Datz TwoWay r = .
RowiVersion Row Version Twokay r r ta b I ein t h e
Shipaddress Ship Address TwoWay r [NorthwindI|B
ShipCity ship City TwoWay [[
ShipCountry Ship Country TwolWay r = data base) to
ShipName Ship Name TwoWay r [FrEIgh tCOSt.
ShippedDate Shipped Date TwoWay r [
ShipPostalCode Ship Postal Code Twoway - =
ShipRegion Ship Region Twaliay [l v

4

Name Display Name Bindable Mocde Key DataType
Address Address Twoliay r
City City TwoWay -
CompanyMame Company Names TwoWWay -
ContackName Contact Name TwoWay -
ContactTitle Contact Tile TwoWay -
Country Country TwoWay r
{CustomerID Customer 1D Twokay v
CustomerID_OLD Customer IDOLD TwoWay -
Fax Fax Twokay -
- = —
4| |
We’ll drill into

Similarly, we’ll change the Navigation Property named Employee to “SalesRep” to reflect the Employee’s
actual role with respect to an Order:

il DevForce Dbject Mapper

File Maodel WView Help

Order
= ds. (New odel) Simple Properties (12) Mavigation Properties (2
= & ServerModelNorthwindIB.edmx
= 31 ServerModelNorthwindIBContext (g) || N2ME Getter Access Seffer Access

N | Customer Customer Public Public b
2| Employes ;2E;E?m|wwr
| Order
| OrderDetail
2| Product
| Supplier

The navigation properties Employeel and Employee2 (on the Employee type) were generated because
the EDM wizard found a self-referencing relationship on the Employee table. That relationship reflects
the recursive hierarchy among Employees: any Employee reports to a single manager, but can be the
manager for many other Employees. The EDM wizard did the best it could naming the needed
navigation properties...

il DevForce Dbject Mapper

File M™odel WView Help

= i (New Model) Simple Properties (18) Mavigation Properties (3)
= & ServerModelNorthwindIB.edmx
= /2 ServerModelNorthwindIBContext (5) ||| rome e
- 1 Customer Employes1 Public Public Fi
- Employes? Fublic Public FE
Liw Order Public Public F.
| OrderDetail
o Product
| Supplier

... but we’d really like to do better. Problem is, we can’t easily tell which one of the navigation properties

will return the current Employee’s single manager, and which will return the collection of her direct
reports.

We've got other annoying little naming problems in our model. If you re-examine one of the earlier
screenshots you can see that entity sets are named the same as entity types:

Name a Is Modified Entity Set Name
Customer |= Customer

UM oo |
Order v Order
OrderDetail r OrderDetail
Product r Product
supplier r supplier

We'd really like to distinguish the set names from the name of the types they contain. We could do it
one at a time, but the Object Mapper has a handy little tool to fix all of our pluralization-related
problems at a single stroke: the Name Pluralizer on the detail screen for the .edmx node:

il DevForce Object Mapper

Fil= Model Wiew Help

E 41 (New Model) -
=l # ServerModelNorthwindIB.edmx J 0 J‘J
= 4| ServerModelNorthwindIBContext (5) Q) @

| Customer w

€

= Employes
| OrderDetail
@/ Product Filz Name: C:AD105vn\LUN100 Fundamentals\040 Fast-Tra:
| Supplier Data Source Key Name: IDEfEU't
Namespacs: ServerModelNorthwindIB
Container Name: ServerModelNorthwindIB.ServerModelMorthwil

Injected Base Types...

I Mame Pluralizer... I I

Verification Tnterceptors: | Both -l IV Generate Binding Attriby #--

i Name Pluralizer

Item
Entity Sets
Entity Types

Scalar Navigation Properties

Collection Mavigation Properties

Reset Defaults

Target Entity Modsl: ServerModelMorthwindIB.edmx

Pluralize

©
O
O
©

O
®
®
O

Singularize Don't Touch

O
@
@
o

o<) [Laeey |

[Cancel]

We'll just accept the default settings and click <OK>.

The Entity Sets now have plural names...

i DevForce EF Object Mapper
File Model View Help

= 4 (Wew Model}
= . ServerModelNorthwindIB.edmx
=] £ ServerModelNorthwindIBContext

| Employee OrderDetail
| Order Product
| OrderDetail Supplier

| Product

| Supplier

Is Abstract Base Type

O Entity: default

| [Enity: defauit

O Entity: default

CrderDetails L] Entity: default
Products L] Entity: default
suppliers] Entity: default

| simple Properties (18)

Navigation Properties (3)

Associations (2)]

Name
Employeels
Employes2
Orders

Getter Access Setter Access | Association

Public
Public

Public
Public

From Role To Role

(Public _____|Public | Employee Employeel Erlojes | Empioyeel

FK_Employee_Employes
FK_Order_Employee

#] Ready

...and so do the navigation properties that return collections.

Now it’s easy to see how to change our navigation properties for the management hierarchy:

Simple Properties (18) Mavigation Properties (3) Simple Properties (18) Mavigation Properties (3)

MName Getter Access Setber Access A& MName Getter Access Sefier Access A

Employesls Public Public | =D DirectReports Public Public P
Public Public Ft Manzger Public Public Fi..
Public Public F Orders Public Public FK

There are many other settings we can change in the Object Mapper, but let’s say we decide we’ve done
enough to generate our model code and get started with other aspects of our development process.
(We can always come back to the Object Mapper for further work.)

We select the Domain Model node in the model tree:

il DevForce Object Mapper 1O =]
File Model Wiew Help

= j‘ (New Model,

B @ ServerMedelNorthwindIB.edmx
2 & ServerModelNorthwindIBContext (8)

| Customer

| Employee

Order

OrderDetail

Product Domain Model Project: | DevFonceSilverlightdppweb j Mew pruject...l
/| Supplier

%) 1%

%

i

%

%

[Create silverlight Domain Madel Project

Namespace: IDDmainMcde|

Entity Manager Marna: I DomainModelEntityManager

¥ Generate code after save .MET Language: |C# =

™ Creats developer partial dass filss [+ Copy Entity Model artifacts
[Updats model project’s app.config

Filz Name:

|] Ready

So that the Object Mapper will generate, in addition to the main model in the web project, a shadow
model in the Silverlight project, check the checkbox labelled “Create Silverlight Domain Model Project”
and set the target project to “DevForceSilverlightApp”:

Diomain Model Project: IDevF@rceEuIverlight-ﬁ.pp'n-".'el:u j Maw prc:jeu:t...l

[¥ Create Sibverlight Domain Model Project
Sihverlight Project: I DevForceSilverlightApp v| Mew prc:ject...l

(Don’t worry: ifyou forget to do this, you can just regenerate the model , this time with the box
checked.)

If we accept the default location suggested by the Object Mapper for the Domain Model Project, leave
the "Create developer partial class files" CheckBox unchecked, and click the "Save Domain Model" tool
bar button, we'll end up with a solution that looks like the following:

Solution Explorer - Solution 'CevForceSilverlightapp' (2 projects)

= =2 e

J Solution 'DevForceSilverlightapp’ (2 projects)
= E DevForcesilverlightapp
=d| Properties
- [References
= |-= shared Code
{ ﬂj DevForcesiverlightAppieb, ServerModelMortbewindIB, Designer . cs
[App.xaml
[MainPage.xaml
=~ 2% DevForcesilverlight AppWeh
[+ [=d| Properties
[+ [+ References
----- [ClientBin
..... [lag
----- _j Default, aspo
= DevForcesilverlightappiteh, ibedr:
i] DewForcesSilverlightsppiweb, ServeriodellorthwindIB, Designer . cs
----- %] EntityServer.sve
----- #| EntityService, sve
----- 4| Global asax
[Lo ServerModelMorthwwindIB. edr:
*'ﬁ ServerModelMortbwindIE . Designer . cs
----- 5] Sikerlight.js
----- 59 Weh,config

The Object Mapper generated a code file:
DevForceSilverlightAppWeb.ServerModelNorthwindIB.Designer.cs’

into the web project, and placed a linked copy of the same code file into the Silverlight project, so that
the same code will be compiled into the Silverlight assembly created from that project.

There is a great deal more you can do in the Object Mapper: defining and assigning base types to create
a business object inheritance hierarchy; allowing or disallowing nulls; enforcing column widths on
strings; setting up facilities for diagnosing concurrency conflicts; and so forth. But your model doesn’t
have to get any more complicated than you need it to be, and you can introduce detail incrementally.
The Object Mapper round trips, so you can return to it throughout your application development cycle
to add, remove, or modify your objects.

You’ll almost certainly want to add custom business logic to your developer partial classes (housed in
those Customer.cs, Employee.cs, and Order.cs files) including custom properties and methods, property
interceptors, validation logic (using DevForce’s very robust Verification features), security logic, event
handlers, and the like. But our model is ready now for sophisticated data retrieval and storage, so let’s
slap on a Ul and let ‘er rip.

Step4. Create Your User Interface in the Configured Silverlight Project
Actually, we already have a Ul of sorts. Our Silverlight project got generated with a XAML MainPage (and
associated “code behind” file) that is set as the application’s start page. We can, in fact, run the
application right now. If we do, we’ll see this:

' ForvB users, code files will have a .vb extension: e.g.,
DevForceSilverlightAppWeb.ServerModelNorthwindIB.Designer.vb. We’'ll only refer to the .cs files in this article,
but you can do the translation.

Zf'DevForceSilverlightApp - Windows Internet Explorer — |ﬁl |1|

———
(== |g http: fflocalhost: 9009/ Def ault, aspx j || X IGoogIe 2|~

File Edit View Favorites Tools Help

f.? *‘1":]':? @DevForceSilverlightnpp | | ﬁ - D - - - l-_;‘,’Page - f_; Tools +

Hello DevForce!

Daone ’_ l_ ’_ l_ ’_ ’_ |N,J Local intranet | AN - g

d'start| =)) 3 DevForceSviapp |"gDevForceSiIverIightAp... “@DevForceSilverlight... =z «@ §:30 PM

It's comforting to see that our application already runs, but let’s put something together that uses those
powerful data persistence facilities. For the purpose of this tutorial, the Ul whose construction we step
through will be pretty spartan, but nevertheless handle a fair amount of data.

Important! The user interface added with the following XAML uses the Silverlight
DataForm control. If you're following along and reproducing this solution in code,
you will need the Silverlight 3 Toolkit installed on your machine for the DataForm to
be available. You can download the Silverlight 3 Toolkit here:

http://silverlight.codeplex.com/Release/ProjectReleases.aspx?Releaseld=24246

Note also that the Silverlight 3 Toolkit is a different piece of software than the
Silverlight 3 Tools (which contains the basic Silverlight SDK). See the DevForce
Release Notes, Prerequisites section, for more information on both.

http://silverlight.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=24246

On a separate note: some readers, depending upon your version of Adobe Acrobat
and other factors, find that code snippets copied from this document and pasted
into Visual Studio lose their end-of-line characters, requiring those to be re-added in|
the Visual Studio code window. If you have this problem, remember that you also
have a completed code solution for the Four Simple Steps app from which you can
copy and paste code, while still following along in the tutorial.

Replace the existing XAML markup in the MainPage with the following:

<UserControl x:Class="DevForceSilverlightApp.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:navigation="clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigatio
n"

xmlns:data="clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data"
xmlns:df="clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data.Data
Form.Toolkit"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
Width="Auto" Height="Auto" mc:Ignorable="d" Background="{x:Null}">
<Grid x:Name="LayoutRoot" Margin="20,20,20,20" >
<Grid.ColumnDefinitions>
<ColumnDefinition Width=".1*"/>
<ColumnDefinition Width=".9*"/>
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height=".1*"/>
<RowDefinition Height=".35*"/>
<RowDefinition Height=".40*"/>
<RowDefinition Height=".15*"/>
</Grid.RowDefinitions>
<TextBlock
x:Name=" layoutRootTitleTextBlock"
Grid.Row="0"
Grid.Column="0"
Grid.ColumnSpan="2"
FontWeight="Bold"
FontSize="20"
VerticalAlignment="Center" Foreground="#FF000000"
><Run Text="NorthwindIB Employees with Orders"/>
</TextBlock>

<df:DataForm x:Name=" employeeDataForm"
Grid.Row="1"
Grid.Column="1"
MinHeight="80"
HorizontalAlignment="Left"
VerticalAlignment="Top"
AutoGenerateFields="True"
Header=""
Margin="0,0,0,10"

</df:DataForm>
<data:DataGrid
x:Name=" ordersDataGrid"
Grid.Row="2"

Grid.Column="1"
HorizontalAlignment="Left"
VerticalAlignment="Top"
AutoGenerateColumns="True"
MinWidth="250"
MinHeight="80"
Background="#FFB5BAB5"
Margin="0,0,20,0"

>
</data:DataGrid>
<ScrollViewer
x:Name=" statusMsg ScrollViewer"

Height="60"

Grid.Row="3"

Grid.Column="1"

Margin="0,0,20,0"
>
<TextBlock x:Name=" statusTextBlock"/>
</ScrollViewer>

</Grid>

</UserControl>

We've added essentially four user interface controls:

A TextBlock to give the form a title

A Silverlight DataForm

A Silverlight DataGrid, and

A TextBlock wrapped in a ScrollViewer to display status information.

P wbhe

Both the DataForm (which will display one Employee at a time in form view) and the DataGrid (which
will display the Orders taken by that Employee) are set to determine automatically what properties to
display from the entities fed to them. They don’t even know the types of those entities (though we do).

The page uses some assemblies we need to will need to reference in the Silverlight project
(DevForceSilverlightApp):

e System.Windows.Controls

e System.Windows.Controls.Data

e System.Windows.Controls.Data.DataForm.Toolkit
e System.Windows.Controls.Navigation

Add those references.

If build the project, you may see the following message:

Update configuration file |

9 The 'ideablade. configuration' section of the ‘app.config’ file in the 'DevForcesSilverlightapp’ project
\{I‘) is no longer the same as that of its dorain model.

Do wou wank to update this file to skay in sync?

Yes Mo

This message is displayed during builds whenever DevForce notices that the DevForce configuration
information in the Silverlight project doesn’t match that in the project where the Domain Model resides.
Say yes, and DevForce will sync up the DevForce information in the app.config file in the Silverlight
project with the information in the web.config file in the web project.

MainPage will also need some code behind to work. Here’s that:

#region Using Statements

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

using IdeaBlade.EntityModel;

using DomainModel;

using System.Collections.ObjectModel;
using System.Windows.Navigation;
using System.Collections;

using System.Text;

#endregion Using Statements

namespace DevForceSilverlightApp {
public partial class MainPage : UserControl {

#region ctor and startup
public MainPage () {
InitializeComponent () ;
Loaded += Page Loaded;
}

void Page Loaded(object sender, RoutedEventArgs e) {
CreateEntityManager () ;
ConfigureDataForm() ;
ConfigureDataGrid() ;
Login() ;
}

#endregion ctor and startup

#region Login
private void Login() {

var cred = new LoginCredential ("demo", "demo", "demo");
WriteMessage ("Logging in ...");
_mgr.LoginAsync (cred, LoggedIn, null);

}

private void LoggedIn (LoginEventArgs args) {
if (args.Error != null) {
WriteMessage (args.Error.Message) ;
}
else {
WriteMessage ("Logged in");
}
LoadData () ;
}

#endregion Login

#region Load Data

private void CreateEntityManager () {
WriteMessage ("Creating EntityManager ...");
_mgr = new DomainModelEntityManager (false);

}

private void LoadData () {
_mgr.ExecuteQueryAsync(mgr.Employees, GotEmployees, null);

}

private void GotEmployees (EntityFetchedEventArgs args) {
if (args.Error != null) {
WriteMessage (args.Error.Message) ;
}
else {
foreach (Employee aEmployee in args.Result) {
_employees.Add (aEmployee) ;
}
// Set CurrentItem to first Employee so form will flesh out
if (_employees.Count > 0) {
_employeeDataForm.CurrentItem = employees[0];

}
ReportFetchCount (args.Result, "Employee");

}

void Orders PendingEntityListResolved(object sender,
PendingEntityListResolvedEventArgs<Order> e) {
PopulateOrderList (e.ResolvedEntities) ;
ReportFetchCount (e.ResolvedEntities, "Order");
((RelatedEntityList<Order>) sender) .PendingEntityListResolved -=
Orders PendingEntityListResolved;

}
#endregion Load Data

#region Configure Environment
private void ConfigureDataForm() {
_employeeDataForm.CommandButtonsVisibility =
DataFormCommandButtonsVisibility.Navigation;
_employeeDataForm.ItemsSource = employees;
_employeeDataForm.CurrentItemChanged += new
EventHandler<EventArgs>(employeeDataForm CurrentItemChanged) ;

}

void employeeDataForm CurrentItemChanged(object sender, EventArgs e)
Employee currentEmployee = (Employee) employeeDataForm.CurrentItem;

WriteMessage ("Now viewing Employee " + (currentEmployee) .LastName + ",
" + (currentEmployee) .FirstName) ;
_orders.Clear();
if (currentEmployee.Orders.IsPendingEntityList) {
currentEmployee.Orders.PendingEntityListResolved +=
new
EventHandler<PendingEntityListResolvedEventArgs<Order>>(Orders PendingEntity
ListResolved) ;
}
else {
PopulateOrderList (currentEmployee.Orders) ;

}

private void PopulateOrderList (IEnumerable<Order> orders) {
foreach (Order anOrder in orders) {
_orders.Add (anOrder) ;
}
}

private void ConfigureDataGrid() {
this. ordersDataGrid.ItemsSource = orders;

}

#endregion Configure Environment

#region Methods to Display Status
private void ReportFetchCount (IEnumerable result, string entityType) {
int entitiesRetrieved = ((ICollection)result).Count;
WriteMessage (string.Format ("Retrieved {0} entities of type " +
entityType, entitiesRetrieved));
}

private void WriteMessage (string msg) {
_msgNumber += 1;
_statusStringBuilder.Append(String.Format ("{0}",

_msgNumber.ToString ("D4")) +
" " + msg + Environment.NewLine) ;
_statusTextBlock.Text = statusStringBuilder.ToString();

_statusMsg ScrollViewer.ScrollToVerticalOffset (statusMsg ScrollViewer.Scrol
lableHeight) ;

}
#endregion Methods to Display Status

#region Private Fields

ObservableCollection<Employee> employees = new
ObservableCollection<Employee> () ;

ObservableCollection<Order> orders = new ObservableCollection<Order>();

DomainModelEntityManager mgr;

int msgNumber = 0;

StringBuilder statusStringBuilder = new StringBuilder();
#endregion Private Fields

#Region "Imports Statements"
Imports System

Imports System.Collections.Generic
Imports System.Ling

Imports
Imports
Imports
Imports
Imports
Imports
Imports
Imports

Imports
Imports
Imports
Imports
Imports
Imports

System.Net

System.Windows
System.Windows.Controls
System.Windows.Documents
System.Windows.Input
System.Windows.Media
System.Windows.Media.Animation
System.Windows.Shapes

IdeaBlade.EntityModel
DevForceSilverlightApp.DomainModel
System.Collections.ObjectModel
System.Windows.Navigation
System.Collections

System.Text

#End Region 'Imports Statements

Partial

Public Class MainPage

Inherits UserControl

#Region

"ctor and startup"

Public Sub New ()

InitializeComponent ()
AddHandler Loaded, AddressOf Page Loaded

End Sub

Private Sub Page Loaded(ByVal sender As Object, ByVal e As
RoutedEventArgs)

CreateEntityManager ()
ConfigureDataForm/()
ConfigureDataGrid()
Login ()

End Sub
#End Region ' ctor and startup

#Region "Login"
Private Sub Login ()

Dim cred = New LoginCredential ("demo", "demo", "demo")
WriteMessage ("Logging in ...")
~mgr.LoginAsync (cred, AddressOf LoggedIn, Nothing)

End Sub

Private Sub LoggedIn (ByVal args As LoginEventArgs)

If args.Error IsNot Nothing Then
WriteMessage (args.Error.Message)
Else
WriteMessage ("Logged in")
End If
LoadData ()

End Sub

#End Region ' Login

#Region "Load Data"
Private Sub CreateEntityManager ()

WriteMessage ("Creating EntityManager ...")
~mgr = New DomainModelEntityManager (False)

End Sub

Private Sub LoadData ()

mgr.ExecuteQueryAsync (_mgr.Employees, AddressOf GotEmployees,

Nothing)_
End Sub

Private Sub GotEmployees (ByVal args As EntityFetchedEventArgs)

If args.Error IsNot Nothing Then
WriteMessage (args.Error.Message)

Else
For Each aEmployee As Employee In args.Result

_employees.Add (aEmployee)

Next aEmployee
' Set CurrentItem to first Employee so form will flesh out
If employees.Count > 0 Then

_employeeDataForm.CurrentItem = employees (0)
End If
ReportFetchCount (args.Result, "Employee")
End If
End Sub

Private Sub Orders PendingEntityListResolved(ByVal sender As Object,
ByVal e As PendingEntityListResolvedEventArgs (Of Order))
PopulateOrderList (e.ResolvedEntities)
ReportFetchCount (e.ResolvedEntities, "Order")
RemoveHandler (CType (sender, RelatedEntityList (Of
Order))) .PendingEntityListResolved, AddressOf
Orders PendingEntityListResolved
End Sub
#End Region ' Load Data

#Region "Configure Environment"
Private Sub ConfigureDataForm/()
_employeeDataForm.CommandButtonsVisibility =
DataFormCommandButtonsVisibility.Navigation
_employeeDataForm.ItemsSource = employees
AddHandler employeeDataForm.CurrentItemChanged, AddressOf
_employeeDataForm CurrentItemChanged
End Sub

Private Sub employeeDataForm CurrentItemChanged(ByVal sender As Object,
ByVal e As EventArgs)
Dim currentEmployee As Employee =
CType (_employeeDataForm.CurrentItem, Employee)
WriteMessage ("Now viewing Employee " & (currentEmployee) .LastName &
", " & (currentEmployee) .FirstName)
~orders.Clear ()
If currentEmployee.Orders.IsPendingEntityList Then
AddHandler currentEmployee.Orders.PendingEntityListResolved,
AddressOf Orders PendingEntityListResolved
Else
PopulateOrderList (currentEmployee.Orders)
End If
End Sub

Private Sub PopulateOrderList (ByVal orders As IEnumerable (Of Order))
For Each anOrder As Order In orders
_orders.Add (anOrder)
Next anOrder
End Sub

Private Sub ConfigureDataGrid()
Me. ordersDataGrid.ItemsSource = orders
End Sub
#End Region ' Configure Environment

#Region "Methods to Display Status"
Private Sub ReportFetchCount (ByVal result As IEnumerable, ByVal

entityType As String)

Dim entitiesRetrieved As Integer = (CType(result,
ICollection)) .Count
WriteMessage (String.Format ("Retrieved {0} entities of type " &
entityType, entitiesRetrieved))
End Sub

Private Sub WriteMessage (ByVal msg As String)
~msgNumber += 1
_statusStringBuilder.Append(String.Format ("{0}",
_msgNumber.ToString ("D4")) & " " & msg & Environment.NewLine)
_statusTextBlock.Text = statusStringBuilder.ToString()

_statusMsg ScrollViewer.ScrollToVerticalOffset (statusMsg ScrollViewer.Scrol
lableHeight)

End Sub
#End Region ' Methods to Display Status

#Region "Private Fields"
Private _employees As New ObservableCollection (Of Employee) ()
Private orders As New ObservableCollection(Of Order) ()
Private mgr As DomainModelEntityManager
Private msgNumber As Integer = 0
Private statusStringBuilder As New StringBuilder ()

#End Region ' Private Fields

End Class

When the page loads, we create an instance of a DevForce EntityManager (which processes data
transfer requests and maintains a local cache of retrieved and newly created data). Next we call a
method, ConfigureDataForm(), to configure the DataForm’s Add and Delete behaviors, set its
IltemsSource, and to establish a handler for its CurrentltemChanged event. We’ll want to know about
that event so we can refresh the Orders grid whenever the user navigates to a different Employee.

Next, we call ConfigureDataGrid() to set the IltemsSource for the DataGrid.

Finally, we log in. In our sample app we’re logging in with dummy credentials and not doing any actual
authentication; but the login is still required before any Silverlight data transfer can take place. Also,
since, in Silverlight, all interactions with the server are asynchronous, we’ll wait to load data into the app
until the callback -- to method LoggedIn() -- is received from the server-side login operation. The
asychronous request for data gets made by the LoadData() method.

One more important point about the code is worth noting. In the handler for the DataForm’s
CurrentltemChanged event, we wish to refresh the Orders DataGrid to show the Orders associated with
the Employee to which the end user has just navigated. We can get the list of those orders as
((Employee)_employeeDataForm.Currentltem).Orders. But note that this is a data retrieval request; and
again, all data retrieval involving a remote server is handled asynchronously in Silverlight. So we need to
set up an event handler to perform any actions that need to be done once the data arrives. And since
the Orders list for any given Employee is a different list than the one for any other Employee, we don’t

set this handler up until we actually need to retrieve a particular Employee’s list. We also remove the
handler in the handler itself, once it has done its work.

Note also that, until the Orders data actually returns from the server,
((Employee)_employeeDataForm.Currentltem).Orders is only a pending Entity list, rather than one
containing data. Itis so flagged via its IsPendingEntityList property.

But remember: DevForce caches data retrieved from remote servers so you don’t have to keep going
back and back to those servers unnecessarily. So the second time we need the Orders for a particular
Employee, we no longer have to make a trip to the server for the data. In that case, the
IsPendingEntityList flag of ((Employee)_employeeDataForm.Currentltem).Orders is false when we test it,
and we can bypass the setting up of the event handler and repopulate the _orders list directly.

We also added a bit of event logging machinery into this solution so you can see the flow in a scrollable
status window at the bottom of the page.

Here’s what the page looks like after the application has been launched, login has occurred, and the
initial data has been retrieved.

NorthwindIB Employees with Orders

DirectReports | IdeaBlade.EntityModel.RelatedEntityList™ 1[DomainModel. Employee] ‘

Manager |DumaanGde|.Emplee& ‘

Orders | IdeaBlade.EntityModel.RelatedEntityList” 1[DomainModel.Order] |

507 - 20th Ave. E.

Address
|Apt. 28 ‘
BirthDate | Wednesday, December 08, 1948
City |Seatt|a ‘
Customer SalesRep OrderDetails FreightCost OrderDate OrderID RequiredDate
DomainModel.Customer | DomainModel .Employee 1deaBlade.EntityModel.RelatedEntityList™ 1[DomainModel.OrderDetail] 142.5100 7/17/1996 12:00:00 AM 10258 8/14/1996 12: *
DomainModel.Customer Domait .EntityModel.RelatedEntityList” 1[DomainModel.OrderDetail] 136.5400 8/1/1996 12:00:00 AM 10270 8/29/1996 12:
DomainModel.Customer DomainModel Employee IdeaBlade.EntityModel.RelatedEntitylist™ 1[DomainModel.OrderDetail] 26.9300 8/7/1996 12:00:00 AM 10275 9/4/1996 12:0
Domai del.Customer Domail .EntityModel.RelatedEntityList™ 1[D del.OrderDetail] 76.8300 8/20/1996 12:00:00 AM 10285 9/17/1996 12:

DomainModel.Customer

DomainModsl.Employes

IdeaBlade.EntityModel. RelatedEntityList

Domail del.Customer

DomainModel.Customer

Domai

DomainModel.Employee

.EntityModel.Rel
IdeaBlade.EntityModel.RelatedEntityList

dEntityList™ 1

=

del.OrderDetail]

1[DomainModel.OrderDetail]

Domail del.Customer

DomainModel.Customer

Domai

DomainModel.Employee

.EntityModel.Rel
IdeaBlade.EntityModel.RelatedEntityList

dEntityList™ 1

=

del.OrderDetail]

1[DomainModel.OrderDetail]

Domail del.Customer

“

Domai

.EntityModel.Rel

0004 Now viewing Employee Davolio, Nancy Lynn
0005 Retrieved % entities of type Employee
0006 Retrieved 124 entities of type Order

dEntityList™ 1[D

[

[

[

[
1[DomainModel.OrderDetail]

[

[

[

[

I del.OrderDetail]

1.3500

21.1800

63.7900

7.5600

24.6900

74.1600

8/28/1996 12:00:00 AM
8/29/1996 12:00:00 AM
9/12/1996 12:00:00 AM
9/16/1996 12:00:00 AM
9/20/1996 12:00:00 AM
9/25/1996 12:00:00 AM

10292

10293

10304

10306

10311

10314

9/25/1996 12:
9/26/1996 12:
10/10/1996 12
10/14/1996 12
10/4/1996 12:
10/23/1996 12

-

>

A

Because we turned on the autogeneration of fields in the DataForm and columns in the DataGrid, we
got a lot of bang for very little coding buck. On the other hand, we got a few things we probably didn’t
want, as well. The DirectReports property of the Employee returns a collection of other Employees,

which the DataForm isn’t quite smart enough to display in a meaningful manner; so it simply notes that

an ldeaBlade.EntityModel.RelatedEntityList<Employee> was returned. The value displayed for the

Orders property has a similar explanation. The Manager property returns a single Employee, but again

the DataForm doesn’t know how to display that very well, so we’ll need to do a little more work to get
what we want. We have the same issues in the DataGrid.

You can learn about the many powerful capabilities of the DataForm and DataGrid from many sources
that you can find on the web, so we won’t go into them further here. In the code sample that
accompanies this article, we have included an alternative startup page (MainPagelntermediate) wherein
we’ve gone a little bit further down the road configuring these two controls. You can launch the
alternative page by adjusting the line of code in App.Xaml.cs that calls the RootVisual:

private void Application Startup(object sender, StartupEventArgs e) {
this.RootVisual = new MainPage () ;
}

Private Sub Application Startup(_
ByVal o As Object, ByVal e As StartupEventArgs) Handles Me.Startup
Me.RootVisual = New MainPage ()
End Sub

The alternative page looks like this:

ff'FourSimpleSteps - Windows Internet Explorer - |E||i|
pr———

=5 |g http: flocalhast:9009] j +4[% IGDDEHB o |-

File Edit “iew Favorites Tools Help

3
{-‘3 ﬁ? @FourSimpIeSteps | | 1&-} - G v [- I-_,{"’Page * (0 Tools -
NorthwindIB Employees with Orders
P M j
[
2
o Last Name | Davolio First Name | Nancy Lynn
=
E .
w Eirth Date Wednesday, December 08, 1
City |Seal:tle
Country |USA

Customer Order Date Freight Cost Required Date Shipped Date

Ernst Handel 7/17/1996 12:00:00 AM 143 510p 8/14/1996 12:00:00 AM 7/23/1986 12:00: ~
» Wartian Herkku 8/1/1996 12:00:00 AM y35 c40p 5/29/1996 12:00:00 AM 8/2/1996 12:00:0 1
1™
g Magazzini Alimentari Riuniti 8/7/1996 12:00:00 AM 55 g300 9/4/1996 12:00:00 AM 8/9/1996 12:00:0
=}

QUICK-Stop 8/20/1996 12:00:00 AM 76.8300 9/17/1996 12:00:00 AM 8/26/1996 12:00:

Tradicdo Hipermercadaos 8/28/1996 12:00:00 AM 1.3500 9/25/1996 12:00:00 AM 9/2/1996 12:00:0

Tortuga Restaurante 8/29/1986 12:00:00 AM 34 1300 9/26/1996 12:00:00 AM 9/11/1996 12:00:

Tortuga Restaurante 9/12/1996 12:00:00 AM == 7ann 10/10/1996 12:00:00 AM9/17/1996 12:00: ~

‘| | 1

0005 Now viewing Employee Davolio, Nancy Lynn ‘_

0006 Retrieved 9 entities of type Employee |

0007 Retrieved 123 entities of type Order n

|Done I_ ’_l_l_l_lhd Lacal inkranet | 100w - g

In addition to taking greater control of the data selection and layout, this version includes date picker
controls for all of the date properties and a dropdown list for the Order.Customer. These are edit-mode
controls, so you don’t see them in the above picture. You can use them by clicking the edit mode button
on the DataForm ¥
DataGrid.

, or by double-clicking in the Customer cell, or any date property cell, on the

You can examine the code and XAML for MainPagelntermediate in the Visual Studio solution that
accompanies this article.

Conclusion

So there you have it: an n-tier Silverlight application in four simple steps. With DevForce and Silverlight,
you can now build data-intensive Rich Internet Applications with a great user experience and seamless
deployment. By freeing you from the task of writing and maintaining the extensive plumbing and
infrastructure code necessary to support an n-tier model, DevForce allows you to focus on building the
application you and your customers need and want.

DevForce ships with plenty of documentation, code samples, and tutorials to help you address the full
spectrum of development tasks; and a world-class team of engineers will help you over the rough spots.
Try it today!

