
Four Simple Steps

Creating a Silverlight Application Using IdeaBlade DevForce

Silverlight

DevForce has been designed from the ground up by experienced enterprise application developers with

several very important goals in mind:

 Make it (following Albert Einstein’s famous advice) “as simple as possible, but not simpler.”

 Support (and encourage) “separation of concerns” in the architecture: your business model (and

all business logic) is entirely separate from your user interface, so you can reuse it across more

than one user interface, and more than one application.

 “Don’t fence me in.” You build the application you want to build, with the functionality and user

interface you need. We make that much easier for you, and we make sure your end product is

truly industrial strength -- but we don’t take over, and we don’t get in your way. Not in the

beginning, and – even more importantly – not later on, after you’ve invested so much into your

development effort that changing course is no longer an option.

So what’s it like to build an application with DevForce Silverlight? Let’s take a walk through the four

simple steps:

 Generate your Silverlight and web projects using the DevForce Silverlight project template

 Create your Entity Data Model

 Create your DevForce Domain Model

 Create your UI.

You can navigate to the Visual Studio solutions for this article using the following links:

 CodeCS

 CodeVB

Step1. Generate Your Silverlight and Web Projects

DevForce provides a Visual Studio
project template to get off the
ground quickly with your
application. Choose File / New /
Project from the main menu, find
the DevForce section under the
language of your choice, and select
the DevForce Silverlight

CodeCS
CodeVB

Application project template.

Specify the name and storage location for your new solution, and click <OK>:

The template creates two projects. The web
project (here named DevForceSilverlightAppWeb)
will ultimately be deployed on your IIS server; the
Silverlight project (DevForceSilverlightApp) will
contain the application parts that will be
downloaded automatically to the client’s browser
via a .XAP file.

Note that the web project is set as the Startup
Project for the solution. That’s important! If the
Silverlight app is set as startup, the MainPage
will still display, but all operations that require
connection to the server – like login and data
retrieval – will be dead in the water!

That’s it for step one. We have our application
structure, and needed references to DevForce and
.NET assemblies are already set. Let’s get on with
creating our application’s business model!

Step2. Create your Entity Data Model
The ADO.NET Entity Data Model is used only server-side in our DevForce Silverlight application, so let’s

add it to the web project:

Please note that adding the Entity Data Model to the web project isn’t your only option: you may prefer

to give it a project of its own. The only requirement is that it should ultimately reside in an assembly that

is deployed server-side.

We’ll name to indicate its function in the app, and the database to which it will map:

Please note: We strongly suggest, for your first pass through this tutorial, that you use the

NorthwindIB database and follow the tutorial quite literally, as written. If you wish to use a

different database or make other departures from the tutorial, do so on your second pass

through. We’ve found this approach not only produces the greatest success and satisfaction, but

also saves you time.

 We’ll generate the app from a database…

… target the
NorthwindIB
database,
name our
connection
settings...

…select the tables we
want mapped…

…and click <Finish>. The wizard cranks out the Entity Data Model, which looks like the following:

There are a few naming problems with the model as generated by the EDM wizard. For one, it’s

impossible to distinguish a navigation property that returns a collection from one that returns a single

related object. The Order property that appears on both the Customer and Employee entities returns, in

each case, a collection of Orders. So does OrderDetail in the Order type. But Customer and Employee in

the Order type return single objects, not collections. It would be helpful if the pluralization of the names

reflected the actual content of the properties.

Also, if we inspect the Properties for any of the
entities defined in our model, we’d see that the
name of the Entity Set that will hold instances of
that entity is the same as the name of the type
itself: again, not so helpful, as we might well prefer
that the set names be plural and only the type
name singular.

We could clean those things up using the EDM designer, but as it so happens, it’s quite a bit easier to do

in the DevForce Object Mapper, so we’ll defer that cleanup and proceed straight to step three. For now,

we just save our Entity Data Model as is.

Step3. Create your DevForce Domain Model
Now that we have an Entity Data Model, we’re ready to create our DevForce-generated Domain Model.

Before we do that, though, let’s take a few moments to answer a couple of basic questions:

 Why two models? and

 What do I get in a DevForce Silverlight app that I wouldn’t get in any Silverlight app?

The ADO.NET Entity Data Model provided by Microsoft provides a great structure for mapping objects to

a relational database, and as used by the Microsoft Entity Framework, permits you, the developer, to

completely offload the work of writing data access code. Not only do you no longer need to master the

various dialects of SQL supported by different DBMS vendors: you no longer need to write SQL in any

form. In your application code, you talk to an object model that can be designed to fit your application

like a glove. You are buffered from the design details of the back-end database, which may be at once a

poor fit to your application and also difficult or impossible to change.

Unfortunately the Entity Data Model can’t be used in a Silverlight application, because there’s nothing in

Silverlight that knows how to do anything useful with it. (The Entity Framework isn’t part of Silverlight.)

Darn!

But wait…DevForce to the rescue!

DevForce leverages the power and benefits of the Entity Data Model and the Entity Framework on the

application server, but gives you a model and a surrounding apparatus that can be used, in very

powerful ways, within your Silverlight client.

DevForce includes an EntityManager, similar in function to the Entity Framework’s ObjectContext, but

much more powerful. This EntityManager resides client-side and maintains a business object cache that

you can query using LINQ!

But the DevForce-generated DomainModel will also be used server-side. DevForce uses the model

server-side and client-side in ways that are appropriate to the two different environments. You have one

business model to maintain – not two.

The figure below shows how DevForce enables you to leverage the power of the Entity Framework in

your Silverlight application. The Devforce Entity Manager maintains a queryable client-side cache of

business objects retrieved from the back-end data store(s).

DevForce-enabled LINQ queries can be directed against the client-side

cache or against back-end data stores.

When directed against the data store, they are automatically translated by the DevForce Entity Server

into LINQ-to-Entities queries that the Entity Framework can process. The Entity Framework then

generates the necessary SQL to retrieve the data from the database, which it delivers to the DevForce

Entity Server. The Entity Server very efficiently ships the data to the client where it is converted into

DevForce business objects of the types defined in your DevForce Domain Model.

Note, by the way, that unlike the Entity Data Model, the DevForce Domain Model doesn’t limit you to

using a single database as a data source. The DevForce Domain Model can encompass any number of

Entity Data Models, each mapping to a different relational database. Even further, it can use DevForce-

generated Entity Data Models that are based on web services – something entirely beyond the standard

Entity Data Model’s capabilities!

Our Entity Data Model(s) will get a few automated modifications from DevForce, but will otherwise

remain as generated. The purpose of the modifications will be to link the DomainModel against which

you write all of your application code to the powerful data retrieval and storage capabilities of the

Microsoft Entity Framework.

Okay, enough with the background. Let’s see just how easy it is to create our DevForce DomainModel.

Start by launching the DevForce Object Mapper from the Tools menu in Visual Studio:

The Object Mapper launches. By pulling down the Model menu or right-clicking the (New Model) node

in the left panel, we can begin the process of linking our Domain Model to an existing Entity Data Model:

Since we have
only a single
Entity Data
Model in our
solution, the
Object
Mapper
automatically
finds it. You
have only to
confirm that
this is an
Entity Data
Model you’d
like to include
in your
Domain
Model by
clicking the
<Open>
button.

The Object
Mapper will
quickly
mine the
EDM for
information
and then
display its
structure.

By selecting the
ServerModelNorthwindIB
Context node in the tree,
you can see (and edit)
much more of the detail
about the EDM.

We’ll drill into
the Order type
and change the
name of the
Freight property
(based on a
Freight column
in the Order
table in the
NorthwindIB
database) to
FreightCost.

Similarly, we’ll change the Navigation Property named Employee to “SalesRep” to reflect the Employee’s

actual role with respect to an Order:

The navigation properties Employee1 and Employee2 (on the Employee type) were generated because

the EDM wizard found a self-referencing relationship on the Employee table. That relationship reflects

the recursive hierarchy among Employees: any Employee reports to a single manager, but can be the

manager for many other Employees. The EDM wizard did the best it could naming the needed

navigation properties...

... but we’d really like to do better. Problem is, we can’t easily tell which one of the navigation properties

will return the current Employee’s single manager, and which will return the collection of her direct

reports.

We’ve got other annoying little naming problems in our model. If you re-examine one of the earlier

screenshots you can see that entity sets are named the same as entity types:

We’d really like to distinguish the set names from the name of the types they contain. We could do it

one at a time, but the Object Mapper has a handy little tool to fix all of our pluralization-related

problems at a single stroke: the Name Pluralizer on the detail screen for the .edmx node:

We’ll just accept the default settings and click <OK>.

The Entity Sets now have plural names...

…and so do the navigation properties that return collections.

Now it’s easy to see how to change our navigation properties for the management hierarchy:

=>

There are many other settings we can change in the Object Mapper, but let’s say we decide we’ve done

enough to generate our model code and get started with other aspects of our development process.

(We can always come back to the Object Mapper for further work.)

We select the Domain Model node in the model tree:

So that the Object Mapper will generate, in addition to the main model in the web project, a shadow

model in the Silverlight project, check the checkbox labelled “Create Silverlight Domain Model Project”

and set the target project to “DevForceSilverlightApp”:

(Don’t worry: ifyou forget to do this, you can just regenerate the model , this time with the box

checked.)

If we accept the default location suggested by the Object Mapper for the Domain Model Project, leave

the "Create developer partial class files" CheckBox unchecked, and click the "Save Domain Model" tool

bar button, we’ll end up with a solution that looks like the following:

The Object Mapper generated a code file:

DevForceSilverlightAppWeb.ServerModelNorthwindIB.Designer.cs1

into the web project, and placed a linked copy of the same code file into the Silverlight project, so that

the same code will be compiled into the Silverlight assembly created from that project.

There is a great deal more you can do in the Object Mapper: defining and assigning base types to create

a business object inheritance hierarchy; allowing or disallowing nulls; enforcing column widths on

strings; setting up facilities for diagnosing concurrency conflicts; and so forth. But your model doesn’t

have to get any more complicated than you need it to be, and you can introduce detail incrementally.

The Object Mapper round trips, so you can return to it throughout your application development cycle

to add, remove, or modify your objects.

You’ll almost certainly want to add custom business logic to your developer partial classes (housed in

those Customer.cs, Employee.cs, and Order.cs files) including custom properties and methods, property

interceptors, validation logic (using DevForce’s very robust Verification features), security logic, event

handlers, and the like. But our model is ready now for sophisticated data retrieval and storage, so let’s

slap on a UI and let ‘er rip.

Step4. Create Your User Interface in the Configured Silverlight Project
Actually, we already have a UI of sorts. Our Silverlight project got generated with a XAML MainPage (and

associated “code behind” file) that is set as the application’s start page. We can, in fact, run the

application right now. If we do, we’ll see this:

1
 For VB users, code files will have a .vb extension: e.g.,

DevForceSilverlightAppWeb.ServerModelNorthwindIB.Designer.vb. We’ll only refer to the .cs files in this article,
but you can do the translation.

It’s comforting to see that our application already runs, but let’s put something together that uses those

powerful data persistence facilities. For the purpose of this tutorial, the UI whose construction we step

through will be pretty spartan, but nevertheless handle a fair amount of data.

Important! The user interface added with the following XAML uses the Silverlight
DataForm control. If you’re following along and reproducing this solution in code,
you will need the Silverlight 3 Toolkit installed on your machine for the DataForm to
be available. You can download the Silverlight 3 Toolkit here:

http://silverlight.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=24246

Note also that the Silverlight 3 Toolkit is a different piece of software than the
Silverlight 3 Tools (which contains the basic Silverlight SDK). See the DevForce
Release Notes, Prerequisites section, for more information on both.

http://silverlight.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=24246

On a separate note: some readers, depending upon your version of Adobe Acrobat
and other factors, find that code snippets copied from this document and pasted
into Visual Studio lose their end-of-line characters, requiring those to be re-added in
the Visual Studio code window. If you have this problem, remember that you also
have a completed code solution for the Four Simple Steps app from which you can
copy and paste code, while still following along in the tutorial.

Replace the existing XAML markup in the MainPage with the following:

XML

<UserControl x:Class="DevForceSilverlightApp.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:navigation="clr-

namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigatio

n"

 xmlns:data="clr-

namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data"

 xmlns:df="clr-

namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data.Data

Form.Toolkit"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 Width="Auto" Height="Auto" mc:Ignorable="d" Background="{x:Null}">

 <Grid x:Name="LayoutRoot" Margin="20,20,20,20" >

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width=".1*"/>

 <ColumnDefinition Width=".9*"/>

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height=".1*"/>

 <RowDefinition Height=".35*"/>

 <RowDefinition Height=".40*"/>

 <RowDefinition Height=".15*"/>

 </Grid.RowDefinitions>

 <TextBlock

 x:Name="_layoutRootTitleTextBlock"

 Grid.Row="0"

 Grid.Column="0"

 Grid.ColumnSpan="2"

 FontWeight="Bold"

 FontSize="20"

 VerticalAlignment="Center" Foreground="#FF000000"

 ><Run Text="NorthwindIB Employees with Orders"/>

 </TextBlock>

 <df:DataForm x:Name="_employeeDataForm"

 Grid.Row="1"

 Grid.Column="1"

 MinHeight="80"

 HorizontalAlignment="Left"

 VerticalAlignment="Top"

 AutoGenerateFields="True"

 Header=""

 Margin="0,0,0,10"

 >

 </df:DataForm>

 <data:DataGrid

 x:Name="_ordersDataGrid"

 Grid.Row="2"

 Grid.Column="1"

 HorizontalAlignment="Left"

 VerticalAlignment="Top"

 AutoGenerateColumns="True"

 MinWidth="250"

 MinHeight="80"

 Background="#FFB5BAB5"

 Margin="0,0,20,0"

 >

 </data:DataGrid>

 <ScrollViewer

 x:Name="_statusMsg_ScrollViewer"

 Height="60"

 Grid.Row="3"

 Grid.Column="1"

 Margin="0,0,20,0"

 >

 <TextBlock x:Name="_statusTextBlock"/>

 </ScrollViewer>

 </Grid>

</UserControl>

We’ve added essentially four user interface controls:

1. A TextBlock to give the form a title

2. A Silverlight DataForm

3. A Silverlight DataGrid, and

4. A TextBlock wrapped in a ScrollViewer to display status information.

Both the DataForm (which will display one Employee at a time in form view) and the DataGrid (which

will display the Orders taken by that Employee) are set to determine automatically what properties to

display from the entities fed to them. They don’t even know the types of those entities (though we do).

The page uses some assemblies we need to will need to reference in the Silverlight project

(DevForceSilverlightApp):

 System.Windows.Controls

 System.Windows.Controls.Data

 System.Windows.Controls.Data.DataForm.Toolkit

 System.Windows.Controls.Navigation

Add those references.

If build the project, you may see the following message:

This message is displayed during builds whenever DevForce notices that the DevForce configuration

information in the Silverlight project doesn’t match that in the project where the Domain Model resides.

Say yes, and DevForce will sync up the DevForce information in the app.config file in the Silverlight

project with the information in the web.config file in the web project.

MainPage will also need some code behind to work. Here’s that:

C#

#region Using Statements

using System;

using System.Collections.Generic;

using System.Linq;

using System.Net;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;

using System.Windows.Shapes;

using IdeaBlade.EntityModel;

using DomainModel;

using System.Collections.ObjectModel;

using System.Windows.Navigation;

using System.Collections;

using System.Text;

#endregion Using Statements

namespace DevForceSilverlightApp {

 public partial class MainPage : UserControl {

 #region ctor and startup

 public MainPage() {

 InitializeComponent();

 Loaded += Page_Loaded;

 }

 void Page_Loaded(object sender, RoutedEventArgs e) {

 CreateEntityManager();

 ConfigureDataForm();

 ConfigureDataGrid();

 Login();

 }

 #endregion ctor and startup

 #region Login

 private void Login() {

 var cred = new LoginCredential("demo", "demo", "demo");

 WriteMessage("Logging in ...");

 _mgr.LoginAsync(cred, LoggedIn, null);

 }

 private void LoggedIn(LoginEventArgs args) {

 if (args.Error != null) {

 WriteMessage(args.Error.Message);

 }

 else {

 WriteMessage("Logged in");

 }

 LoadData();

 }

 #endregion Login

 #region Load Data

 private void CreateEntityManager() {

 WriteMessage("Creating EntityManager ...");

 _mgr = new DomainModelEntityManager(false);

 }

 private void LoadData() {

 _mgr.ExecuteQueryAsync(_mgr.Employees, GotEmployees, null);

 }

 private void GotEmployees(EntityFetchedEventArgs args) {

 if (args.Error != null) {

 WriteMessage(args.Error.Message);

 }

 else {

 foreach (Employee aEmployee in args.Result) {

 _employees.Add(aEmployee);

 }

 // Set CurrentItem to first Employee so form will flesh out

 if (_employees.Count > 0) {

 _employeeDataForm.CurrentItem = _employees[0];

 }

 ReportFetchCount(args.Result, "Employee");

 }

 }

 void Orders_PendingEntityListResolved(object sender,

PendingEntityListResolvedEventArgs<Order> e) {

 PopulateOrderList(e.ResolvedEntities);

 ReportFetchCount(e.ResolvedEntities, "Order");

 ((RelatedEntityList<Order>)sender).PendingEntityListResolved -=

Orders_PendingEntityListResolved;

 }

 #endregion Load Data

 #region Configure Environment

 private void ConfigureDataForm() {

 _employeeDataForm.CommandButtonsVisibility =

DataFormCommandButtonsVisibility.Navigation;

 _employeeDataForm.ItemsSource = _employees;

 _employeeDataForm.CurrentItemChanged += new

EventHandler<EventArgs>(_employeeDataForm_CurrentItemChanged);

 }

 void _employeeDataForm_CurrentItemChanged(object sender, EventArgs e) {

 Employee currentEmployee = (Employee)_employeeDataForm.CurrentItem;

 WriteMessage("Now viewing Employee " + (currentEmployee).LastName + ",

" + (currentEmployee).FirstName);

 _orders.Clear();

 if (currentEmployee.Orders.IsPendingEntityList) {

 currentEmployee.Orders.PendingEntityListResolved +=

 new

EventHandler<PendingEntityListResolvedEventArgs<Order>>(Orders_PendingEntity

ListResolved);

 }

 else {

 PopulateOrderList(currentEmployee.Orders);

 }

 }

 private void PopulateOrderList(IEnumerable<Order> orders) {

 foreach (Order anOrder in orders) {

 _orders.Add(anOrder);

 }

 }

 private void ConfigureDataGrid() {

 this._ordersDataGrid.ItemsSource = _orders;

 }

 #endregion Configure Environment

 #region Methods to Display Status

 private void ReportFetchCount(IEnumerable result, string entityType) {

 int entitiesRetrieved = ((ICollection)result).Count;

 WriteMessage(string.Format("Retrieved {0} entities of type " +

entityType, entitiesRetrieved));

 }

 private void WriteMessage(string msg) {

 _msgNumber += 1;

 _statusStringBuilder.Append(String.Format("{0}",

_msgNumber.ToString("D4")) +

 " " + msg + Environment.NewLine);

 _statusTextBlock.Text = _statusStringBuilder.ToString();

_statusMsg_ScrollViewer.ScrollToVerticalOffset(_statusMsg_ScrollViewer.Scrol

lableHeight);

 }

 #endregion Methods to Display Status

 #region Private Fields

 ObservableCollection<Employee> _employees = new

ObservableCollection<Employee>();

 ObservableCollection<Order> _orders = new ObservableCollection<Order>();

 DomainModelEntityManager _mgr;

 int _msgNumber = 0;

 StringBuilder _statusStringBuilder = new StringBuilder();

 #endregion Private Fields

 }

}

VB

#Region "Imports Statements"

Imports System

Imports System.Collections.Generic

Imports System.Linq

Imports System.Net

Imports System.Windows

Imports System.Windows.Controls

Imports System.Windows.Documents

Imports System.Windows.Input

Imports System.Windows.Media

Imports System.Windows.Media.Animation

Imports System.Windows.Shapes

Imports IdeaBlade.EntityModel

Imports DevForceSilverlightApp.DomainModel

Imports System.Collections.ObjectModel

Imports System.Windows.Navigation

Imports System.Collections

Imports System.Text

#End Region 'Imports Statements

Partial Public Class MainPage

 Inherits UserControl

#Region "ctor and startup"

 Public Sub New()

 InitializeComponent()

 AddHandler Loaded, AddressOf Page_Loaded

 End Sub

 Private Sub Page_Loaded(ByVal sender As Object, ByVal e As

RoutedEventArgs)

 CreateEntityManager()

 ConfigureDataForm()

 ConfigureDataGrid()

 Login()

 End Sub

#End Region ' ctor and startup

#Region "Login"

 Private Sub Login()

 Dim cred = New LoginCredential("demo", "demo", "demo")

 WriteMessage("Logging in ...")

 _mgr.LoginAsync(cred, AddressOf LoggedIn, Nothing)

 End Sub

 Private Sub LoggedIn(ByVal args As LoginEventArgs)

 If args.Error IsNot Nothing Then

 WriteMessage(args.Error.Message)

 Else

 WriteMessage("Logged in")

 End If

 LoadData()

 End Sub

#End Region ' Login

#Region "Load Data"

 Private Sub CreateEntityManager()

 WriteMessage("Creating EntityManager ...")

 _mgr = New DomainModelEntityManager(False)

 End Sub

 Private Sub LoadData()

 _mgr.ExecuteQueryAsync(_mgr.Employees, AddressOf GotEmployees,

Nothing)

 End Sub

 Private Sub GotEmployees(ByVal args As EntityFetchedEventArgs)

 If args.Error IsNot Nothing Then

 WriteMessage(args.Error.Message)

 Else

 For Each aEmployee As Employee In args.Result

 _employees.Add(aEmployee)

 Next aEmployee

 ' Set CurrentItem to first Employee so form will flesh out

 If _employees.Count > 0 Then

 _employeeDataForm.CurrentItem = _employees(0)

 End If

 ReportFetchCount(args.Result, "Employee")

 End If

 End Sub

 Private Sub Orders_PendingEntityListResolved(ByVal sender As Object,

ByVal e As PendingEntityListResolvedEventArgs(Of Order))

 PopulateOrderList(e.ResolvedEntities)

 ReportFetchCount(e.ResolvedEntities, "Order")

 RemoveHandler (CType(sender, RelatedEntityList(Of

Order))).PendingEntityListResolved, AddressOf

Orders_PendingEntityListResolved

 End Sub

#End Region ' Load Data

#Region "Configure Environment"

 Private Sub ConfigureDataForm()

 _employeeDataForm.CommandButtonsVisibility =

DataFormCommandButtonsVisibility.Navigation

 _employeeDataForm.ItemsSource = _employees

 AddHandler _employeeDataForm.CurrentItemChanged, AddressOf

_employeeDataForm_CurrentItemChanged

 End Sub

 Private Sub _employeeDataForm_CurrentItemChanged(ByVal sender As Object,

ByVal e As EventArgs)

 Dim currentEmployee As Employee =

CType(_employeeDataForm.CurrentItem, Employee)

 WriteMessage("Now viewing Employee " & (currentEmployee).LastName &

", " & (currentEmployee).FirstName)

 _orders.Clear()

 If currentEmployee.Orders.IsPendingEntityList Then

 AddHandler currentEmployee.Orders.PendingEntityListResolved,

AddressOf Orders_PendingEntityListResolved

 Else

 PopulateOrderList(currentEmployee.Orders)

 End If

 End Sub

 Private Sub PopulateOrderList(ByVal orders As IEnumerable(Of Order))

 For Each anOrder As Order In orders

 _orders.Add(anOrder)

 Next anOrder

 End Sub

 Private Sub ConfigureDataGrid()

 Me._ordersDataGrid.ItemsSource = _orders

 End Sub

#End Region ' Configure Environment

#Region "Methods to Display Status"

 Private Sub ReportFetchCount(ByVal result As IEnumerable, ByVal

entityType As String)

 Dim entitiesRetrieved As Integer = (CType(result,

ICollection)).Count

 WriteMessage(String.Format("Retrieved {0} entities of type " &

entityType, entitiesRetrieved))

 End Sub

 Private Sub WriteMessage(ByVal msg As String)

 _msgNumber += 1

 _statusStringBuilder.Append(String.Format("{0}",

_msgNumber.ToString("D4")) & " " & msg & Environment.NewLine)

 _statusTextBlock.Text = _statusStringBuilder.ToString()

_statusMsg_ScrollViewer.ScrollToVerticalOffset(_statusMsg_ScrollViewer.Scrol

lableHeight)

 End Sub

#End Region ' Methods to Display Status

#Region "Private Fields"

 Private _employees As New ObservableCollection(Of Employee)()

 Private _orders As New ObservableCollection(Of Order)()

 Private _mgr As DomainModelEntityManager

 Private _msgNumber As Integer = 0

 Private _statusStringBuilder As New StringBuilder()

#End Region ' Private Fields

End Class

When the page loads, we create an instance of a DevForce EntityManager (which processes data

transfer requests and maintains a local cache of retrieved and newly created data). Next we call a

method, ConfigureDataForm(), to configure the DataForm’s Add and Delete behaviors, set its

ItemsSource, and to establish a handler for its CurrentItemChanged event. We’ll want to know about

that event so we can refresh the Orders grid whenever the user navigates to a different Employee.

Next, we call ConfigureDataGrid() to set the ItemsSource for the DataGrid.

Finally, we log in. In our sample app we’re logging in with dummy credentials and not doing any actual

authentication; but the login is still required before any Silverlight data transfer can take place. Also,

since, in Silverlight, all interactions with the server are asynchronous, we’ll wait to load data into the app

until the callback -- to method LoggedIn() -- is received from the server-side login operation. The

asychronous request for data gets made by the LoadData() method.

One more important point about the code is worth noting. In the handler for the DataForm’s

CurrentItemChanged event, we wish to refresh the Orders DataGrid to show the Orders associated with

the Employee to which the end user has just navigated. We can get the list of those orders as

((Employee)_employeeDataForm.CurrentItem).Orders. But note that this is a data retrieval request; and

again, all data retrieval involving a remote server is handled asynchronously in Silverlight. So we need to

set up an event handler to perform any actions that need to be done once the data arrives. And since

the Orders list for any given Employee is a different list than the one for any other Employee, we don’t

set this handler up until we actually need to retrieve a particular Employee’s list. We also remove the

handler in the handler itself, once it has done its work.

Note also that, until the Orders data actually returns from the server,

((Employee)_employeeDataForm.CurrentItem).Orders is only a pending Entity list, rather than one

containing data. It is so flagged via its IsPendingEntityList property.

But remember: DevForce caches data retrieved from remote servers so you don’t have to keep going

back and back to those servers unnecessarily. So the second time we need the Orders for a particular

Employee, we no longer have to make a trip to the server for the data. In that case, the

IsPendingEntityList flag of ((Employee)_employeeDataForm.CurrentItem).Orders is false when we test it,

and we can bypass the setting up of the event handler and repopulate the _orders list directly.

We also added a bit of event logging machinery into this solution so you can see the flow in a scrollable

status window at the bottom of the page.

Here’s what the page looks like after the application has been launched, login has occurred, and the

initial data has been retrieved.

Because we turned on the autogeneration of fields in the DataForm and columns in the DataGrid, we

got a lot of bang for very little coding buck. On the other hand, we got a few things we probably didn’t

want, as well. The DirectReports property of the Employee returns a collection of other Employees,

which the DataForm isn’t quite smart enough to display in a meaningful manner; so it simply notes that

an IdeaBlade.EntityModel.RelatedEntityList<Employee> was returned. The value displayed for the

Orders property has a similar explanation. The Manager property returns a single Employee, but again

the DataForm doesn’t know how to display that very well, so we’ll need to do a little more work to get

what we want. We have the same issues in the DataGrid.

You can learn about the many powerful capabilities of the DataForm and DataGrid from many sources

that you can find on the web, so we won’t go into them further here. In the code sample that

accompanies this article, we have included an alternative startup page (MainPageIntermediate) wherein

we’ve gone a little bit further down the road configuring these two controls. You can launch the

alternative page by adjusting the line of code in App.Xaml.cs that calls the RootVisual:

C#

private void Application_Startup(object sender, StartupEventArgs e) {

 this.RootVisual = new MainPage ();
}

VB

Private Sub Application_Startup(_

 ByVal o As Object, ByVal e As StartupEventArgs) Handles Me.Startup

 Me.RootVisual = New MainPage ()
End Sub

The alternative page looks like this:

In addition to taking greater control of the data selection and layout, this version includes date picker

controls for all of the date properties and a dropdown list for the Order.Customer. These are edit-mode

controls, so you don’t see them in the above picture. You can use them by clicking the edit mode button

on the DataForm , or by double-clicking in the Customer cell, or any date property cell, on the

DataGrid.

You can examine the code and XAML for MainPageIntermediate in the Visual Studio solution that

accompanies this article.

Conclusion
So there you have it: an n-tier Silverlight application in four simple steps. With DevForce and Silverlight,

you can now build data-intensive Rich Internet Applications with a great user experience and seamless

deployment. By freeing you from the task of writing and maintaining the extensive plumbing and

infrastructure code necessary to support an n-tier model, DevForce allows you to focus on building the

application you and your customers need and want.

DevForce ships with plenty of documentation, code samples, and tutorials to help you address the full

spectrum of development tasks; and a world-class team of engineers will help you over the rough spots.

Try it today!

